study of the severity of accidents in tehran using statistical modeling and data mining techniques

Authors

حسام الدین راضی اردکانی

h ardakani razi دانشگاه صنعتی شریف محمدرضا احدی

mr ahadi دانشگاه علم و صنعت ایرانسازمان اصلی تایید شده: دانشگاه علم و صنعت ایران (iran university of science and technology)

abstract

backgrounds and aims: the tehran province was subject to the second highest incidence of fatalities due to traffic accidents in 1390. most studies in this field examine rural traffic accidents, but this study is based on the use of logit models and artificial neural networks to evaluate the factors that affect the severity of accidents within the city of tehran. materials and methods: among the various types of crashes, head-on collisions are specified as the most serious type, which is investigated in this study with the use of tehran’s accident data. in the modeling process, the severity of the accident is the dependent variable and defined as a binary covariate, which are non-injury accidents and injury accidents. the independent variables are parameters such as the characteristics of the driver, time of the accident, traffic and environmental characteristics. in addition to the prediction accuracy comparison of the two models, the elasticity of the logit model is compared with a sensitivity analysis of the neural network. results: the results show that the proposed model provides a good estimate of an accident's severity. the explanatory variables that have been determined to be significant in the final models are the driver’s gender, age and education, along with negligence of the traffic rules, inappropriate acceleration, deviation to the left, type of vehicle, pavement conditions, time of the crash and street width. conclusion: an artificial neural network model can be useful as a statistical model in the analysis of factors that affect the severity of accidents. according to the results, human errors and illiteracy of drivers increase the severity of crashes, and therefore, educating drivers is the main strategy that will reduce accident severity in iran. special attention should be given to a driver’s age group, with particular care taken when they are very young. references ayati e. the cost of traffic accidents in iran. mashhad: ferdowsi university of mashhad; 2008. tehran safe community. 2012; available from: www.tehransafe14.com/default.aspx? 04&relatedid;=vnehvndy. pei x, wong s c, sze n.n. the roles of exposure and speed in road safety analysis. accid anal prev. 2012; 48: 464-71. national highway traffic safety administration, traffic safety facts fars/ges annual report, proceedings of 90th 2011; washington, d.c. jones a p, jorgensen s h. the use of multilevel models for the prediction of road accident outcomes. accid anal prev. 2003; 35(1): 59-69. miltner e, salwender h j. influencing factors on the injury severity of restrained front seat occupants in car-to-car head-on collisions. accid anal prev. 1995; 27(2): 143-50. srinivasan k k. injury severity analysis with variable and correlated thresholds: ordered mixed logit formulation. transp res rec. 2002; 1784: 132-42. garder p. segment characteristics and severity of head-on crashes on two-lane rural highways in maine. accid anal prev. 2006; 38(4): 652-61. zuxuan d, ivan j.n, gårder p. analysis of factors affecting the severity of head-on crashes two-lane rural highways in connecticut 2006; 41: 137-46. mercier cr, shelley ii mc, rimkus j b, mercier j m. age and gender as predictors of injury severity in head-on highway vehicular collisions.1997; 24: 37-46. haleem k, abdel-aty m. examining traffic crash injury severity at unsignalized intersections. j safety res. 2010; 41(4): 347-57. peek-asa c, britton c, young t, pawlovich m, falb s. teenage driver crash incidence and factors influencing crash injury by rurality. j safety res. 2010; 41(6): 487-92. kononen d w, flannagan c a c, wang s c. identification and validation of a logistic regression model for predicting serious injuries associated with motor vehicle crashes. accid anal prev. 2011; 43(1): 112-22. rifaat s m, tay r, de barros a. effect of street pattern on the severity of crashes involving vulnerable road users. accid anal prev. 2011; 43(1): 276-83. chong m, abraham a, paprzycki m. traffic accident analysis using machine learning paradigms. inform 2005; 29(1): 89-98. delen d, sharda r, bessonov m. identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. accid anal prev. 2006; 38(3): 434-44. abdelwahab ht, abdel-aty ma. development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections2001. hensher da, rose jm, greene wh. applied choice analysis: a primer: cambridge university press 2005. train ke. discrete choice methods with simulation. united states of america cambridge university press 2007. pal sk, mitra s. multilayer perceptron, fuzzy sets, and classification, ieee transactions on neural networks 1992. baykan n a, yilmaz n a. mineral classification system with multiple artificial neural networks using k-fold cross validation. j comput math. 2011; 16(1): 22-30. izenman aj. modern multivariate statistical techniques, springer science and business media 2008. elvik r. speed and road safety: synthesis of evidence from evaluation studies. transp res rec. 2005; 1908: 59-69. shams m, rahimi-movaghar v. risky driving behaviors in tehran, iran. traffic inj prev.2009; 10(1): 91-4. abdelwahab ht, abdel-aty m a. development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections. transp res rec. 2001; 1746: 6-13.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

data mining rules and classification methods in insurance: the case of collision insurance

assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...

15 صفحه اول

this study investigated the relationship between quality of work life and organization citizenship behavior from the viewpoint of teachers in high schools in tehran city.

چکیده هدف از پژوهش حاضر بررسی رابطه کیفیت زندگی کاری و رفتار شهروندی سازمانی در مدارس مقطع متوسطه پسرانه شهر تهران از دیدگاه دبیران بود. روش پژوهش حاضر توصیفی و از نوع همبستگی بود. از بین دبیران مدارس شهر تهران تعداد 380 نفر به روش نمونه گیری خوشه ای چند مرحله ای به عنوان نمونه پژوهش انتخاب شدند و با تکمیل پرسشنامه ی کیفیت زندگی کاری والتون(1975) و پرسشنامه ی رفتار شهروندی سازمانی پودساکو...

15 صفحه اول

metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)

هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...

the effect of traffic density on the accident externality from driving the case study of tehran

در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...

15 صفحه اول

My Resources

Save resource for easier access later


Journal title:
ارتقای ایمنی و پیشگیری از مصدومیتها

جلد ۱، شماره ۲، صفحات ۸۶-۹۴

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023